首页> 外文OA文献 >A new hybrid integral representation for frequency domain scattering in layered media
【2h】

A new hybrid integral representation for frequency domain scattering in layered media

机译:一种新的频域散射混合积分表示   分层媒体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A variety of problems in acoustic and electromagnetic scattering require theevaluation of impedance or layered media Green's functions. Given a pointsource located in an unbounded half-space or an infinitely extended layer,Sommerfeld and others showed that Fourier analysis combined with contourintegration provides a systematic and broadly effective approach, leading towhat is generally referred to as the Sommerfeld integral representation. Wheneither the source or target is at some distance from an infinite boundary, thenumber of degrees of freedom needed to resolve the scattering response is verymodest. When both are near an interface, however, the Sommerfeld integralinvolves a very large range of integration and its direct application becomesunwieldy. Historically, three schemes have been employed to overcome thisdifficulty: the method of images, contour deformation, and asymptotic methodsof various kinds. None of these methods make use of classical layer potentialsin physical space, despite their advantages in terms of adaptive resolution andhigh-order accuracy. The reason for this is simple: layer potentials areimpractical in layered media or half-space geometries since they require thediscretization of an infinite boundary. In this paper, we propose a hybridmethod which combines layer potentials (physical-space) on a finite portion ofthe interface together with a Sommerfeld-type (Fourier) correction. We provethat our method is efficient and rapidly convergent for arbitrarily locatedsources and targets, and show that the scheme is particularly effective whensolving scattering problems for objects which are close to the half-spaceboundary or even embedded across a layered media interface.
机译:声波和电磁波散射中的各种问题都需要评估阻抗或分层介质格林的功能。给定点源位于无边界的半空间或无限扩展的层中,Sommerfeld等人表明,傅立叶分析与轮廓积分相结合提供了一种系统且广泛有效的方法,因此通常将其称为Sommerfeld积分表示。当源或目标与无限边界相距一定距离时,解决散射响应所需的自由度数非常小。但是,当两者都靠近接口时,Sommerfeld积分涉及很大范围的积分,并且其直接应用变得很笨拙。从历史上看,采用了三种方案来克服这一难题:图像方法,轮廓变形和各种渐近方法。尽管它们在自适应分辨率和高阶精度方面具有优势,但这些方法都没有利用物理空间中的经典层势。原因很简单:在层状介质或半空间几何结构中,层电位不切实际,因为它们需要离散无限的边界。在本文中,我们提出了一种混合方法,该方法将界面的有限部分上的层电势(物理空间)与Sommerfeld型(Fourier)校正结合在一起。我们证明了我们的方法对于任意定位的源和目标是有效且快速收敛的,并且表明该方案在解决接近半空间边界甚至嵌入层状媒体接口的对象的散射问题时特别有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号